Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

نویسندگان

  • Abdul Basit
  • Francisco Espinosa
  • Ruben Avila
  • S Raza
  • N Irfan
چکیده

In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between Eulerian and Lagrangian Statistics in the Study of Atmospheric Dispersion in the Convective Boundary Layer: a Large-eddy Simulation Study

Atmospheric dispersion is a topic of great importance especially in relation to pollutant transport. Two different approaches, known as the Eulerian and the Lagrangian frameworks, are used to describe this process. In the Eulerian framework, statistical properties are calculated in a fixed reference frame. This approach is most commonly used in field experiments as well as in laboratory experim...

متن کامل

Stochastic trajectory modelling of atmospheric dispersion

The stochastic trajectory-based (Lagrangian) approach has gained increasing importance and sophistication in atmospheric transport and dispersion modelling over the last few decades. State-of-the-art Lagrangian particle dispersion model (LPDMs) are used to compute trajectories of a large number of ‘marked’ particles and numerically simulate the dispersion of a pollutant (passive tracer) in the ...

متن کامل

Toward a Fully Lagrangian Atmospheric Modeling System

An improved treatment of advection is essential for atmospheric transport and chemistry models. Eulerian treatments are generally plagued with instabilities, unrealistic negative constituent values, diffusion, and dispersion errors. A higher-order Eulerian model improves one error at significant cost but magnifies another error. The cost of semi-Lagrangian models is too high for many applicatio...

متن کامل

Eulerian Lagrangian Simulation of Particle Capture and Dendrite Formation on Binary Fibers

The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with th...

متن کامل

A hybrid approach to particle tracking and Eulerian-Lagrangian models in the simulation of coastal dispersion

A hybrid approach to the problem of predicting the dispersion of contaminants (e.g. suspended solids or heated water) in coastal areas is presented. A neutral random walk particle tracking method is adopted in the vicinity of the source point, where steep concentration gradients occur. In the case of heat dispersion particles are assigned with buoyancy, which leads to additive horizontal diffus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiological protection : official journal of the Society for Radiological Protection

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2008